Cold In-Place Recycling and Full-Depth Reclamation Literature Review

By: Ben C. Cox and Isaac L. Howard

In the last several decades, in-place recycling techniques have seen increased use for rehabilitating low-volume roads. Depending on the milling depth, these techniques (when absent heat) are generally classified as either cold in-place recycling (CIR) or full-depth reclamation (FDR). CIR often refers to reclaiming and recycling the majority of the existing asphalt concrete layer(s); whereas, FDR often refers to recycling all existing asphalt concrete layer(s) as well as a significant portion of the underlying layers. Recently, the distinction between these two definitions has become clearer, but cross-use of the terms has been observed (Berthelot et al. 2000). Primarily for this reason, a literature review which reports both CIR and FDR properties (e.g. binder dosages and recycling thicknesses) was performed.

This document presents properties compiled from 81 CIR references and 18 FDR references, respectively, as a part of Mississippi Department of Transportation State Study 250. The goal of this document is to provide an extensive list of reference values that can be quickly viewed to gain a broad understanding of the current state of practice of CIR and FDR. It should be noted that the included references were published from 1982 to 2013; in that time, terminology and methods changed as the state of the practice evolved. To compile these references into a consistent form, minor interpretation was required in some instances, which should be noted but should not affect the overall significance of the information.

References often differed in terms of format and content. For instance, one reference may have documented a field in-place recycling project and reported pertinent properties (e.g. bulk reclaimed asphalt pavement (RAP) gradation); whereas, another reference may have performed laboratory testing to determine the effect of bulk gradation on performance. In a case such as this, all of the laboratory-tested gradations were reported within sound reason. For references that reported ranges of values, the average was typically reported (e.g. for a mixing moisture content of 3.5 to 4.5, reported value would be 4.0). Judgment was required to filter extreme outliers so as to obtain a database that is most representative of construction and research. In general, values are listed in ascending order to facilitate data analysis (e.g. construction of histograms). Information is compiled in five parts:

- **Part 1** In-place Recycling Traffic Levels (pp. 2-4)
- **Part 2** In-Place Recycling Layer Thicknesses (pp. 4-6)
- **Part 3** In-Place Recycling Moisture Contents (pp. 6-8)
- **Part 4** In-Place Recycling Binders (pp. 9-14)
- **Part 5** In-Place Recycling Gradations (pp. 15-16)

White Paper Number CMRC WP 13-1 July 2013

Mississippi State University Construction Materials Research Center Ph: 662-325-3050

Sponsor: MDOT Research Division State Research Engineer-James Watkins

Part 1: In-Place Recycling Traffic Levels

Average annual daily traffic (AADT) values are shown below for CIR and FDR. This list is composed of values from 30 CIR references and 7 FDR references. The distribution of AADT for 196 CIR values and 9 FDR values is similar. The mean values for CIR and FDR are 2,567 and 2,248, respectively.

CIR Reference	AADT
Morian et al. (2004)	124
Kim et al. (2010)	130
Anderson (1985)	150
Anderson (1985)	150
Scholz et al. (1991b)	180
Cross and Ramaya (1995)	183
Kim et al. (2010)	190
Anderson (1985)	200
Scholz et al. (1991b)	200
Scholz et al. (1991b)	220
Morian et al. (2004)	225
Scholz et al. (1991b)	260
Kim and Lee (2008)	260
Cross and Ramaya (1995)	283
Jahren et al. (1998)	290
Morian et al. (2004)	299
Jahren et al. (1998)	300
Steward (1987)	320
Jahren et al. (1998)	340
Kim et al. (2010)	340
Larsen et al. (1983)	350
Jahren et al. (1999)	360
Cross and Ramaya (1995)	370
Scholz et al. (1991b)	390
Kim et al. (2010)	390

CIR Reference	AADT	CIR Reference	AADT
Anderson (1985)	400	Kim and Lee (2008)	710
Anderson (1985)	400	Kim et al. (2010)	740
Charmot and Romero (2010)	400	Kim et al. (2010)	770
Charmot and Romero (2010)	400	Scholz et al. (1991b)	800
Kim et al. (2010)	400	Scholz et al. (1991b)	800
Cross et al. (2002)	440	Loria et al. (2008)	800
Cross and Ramaya (1995)	443	Cross et al. (2010)	810
Cross and Ramaya (1995)	448	Scholz et al. (1991b)	820
Scholz et al. (1991b)	450	Jahren et al. (1998)	820
Kim et al. (2010)	450	Jahren et al. (1998)	850
Cross and Ramaya (1995)	470	Scholz et al. (1991b)	880
Jahren et al. (1998)	470	Kim et al. (2010)	890
Cross and Ramaya (1995)	473	Scholz et al. (1991b)	900
Cross et al. (2010)	480	Scholz et al. (1991b)	900
Cohen et al. (1989)	500	Kim et al. (2010)	900
Scholz et al. (1991b)	520	Kim et al. (2010)	930
Scholz et al. (1991b)	520	Charmot and Romero (2010)	932
Jahren et al. (1998)	520	Jahren et al. (1998)	940
Kim et al. (2010)	540	Jahren et al. (1998)	950
Scholz et al. (1991b)	550	Charmot and Romero (2010)	978
Jahren et al. (1998)	550	Scholz et al. (1991b)	980
Kim et al. (2010)	550	Cross and Ramaya (1995)	980
Jahren et al. (1998)	570	Jahren et al. (1998)	990
Kim et al. (2010)	570	Scholz et al. (1991b)	1000
Cross and Ramaya (1995)	573	Scholz et al. (1991b)	1000
Forsberg et al. (2002)	580	Scholz et al. (1991b)	1000
Scholz et al. (1991b)	600	Kim et al. (2010)	1000
Scholz et al. (1991b)	600	Cross et al. (2002)	1033
Scholz et al. (1991b)	600	Jahren et al. (1998)	1080
Jahren et al. (1998)	600	Scholz et al. (1991b)	1100
Kim et al. (2010)	610	Loria et al. (2008)	1100
Jahren et al. (1998)	620	Kim et al. (2010)	1100
Cross and Ramaya (1995)	638	Jahren et al. (1998)	1110
Cross et al. (2002)	640	Cross and Ramaya (1995)	1135
Jahren et al. (1998)	665	Kim et al. (2010)	1140

CIR Reference	AADT	CIR Reference AADT		CIR Reference	AADT
Cross et al. (2002)	1150	Cross et al. (2010)	2270	Morian et al. (2004)	3422
Kim et al. (2010)	1170	Morian et al. (2004)	2334	Morian et al. (2004)	3532
Morian et al. (2004)	1172	Scholz et al. (1991b)	2350	Scholz et al. (1991b)	3600
Kim et al. (2010)	1250	Rogge et al. (1992)	2350	Scholz et al. (1991b)	3600
Morian et al. (2004)	1400	Cross et al. (2010)	2390	Babaei and Walter (1989)	3650
McDaniel (1988)	1430	Morian et al. (2004)	2426	Cross et al. (2010)	3720
Morian et al. (2004)	1470	Morian et al. (2004)	2481	Cross et al. (2010)	3840
Kim et al. (2010)	1490	Babaei and Walter (1989)	2500	Morian et al. (2004)	3856
Loria et al. (2008)	1500	Lauter and Corbett (1998)	2500	Cross et al. (2010)	4220
Cross et al. (2010)	1500	Henault and Kilpatrick (2009)	2515	Babaei and Walter (1989)	4750
Cross et al. (2010)	1500	Morian et al. (2004)	2623	Scholz et al. (1991b)	4800
Cross et al. (2010)	1500	Morian et al. (2004)	2645	Cross et al. (2010)	4820
Kim et al. (2010)	1560	Scholz et al. (1991b)	2700	Loria et al. (2008)	5000
Morian et al. (2004)	1581	Morian et al. (2004)	2700	Morian et al. (2004)	5054
Cross et al. (2010)	1620	Morian et al. (2004)	2735	Morian et al. (2004)	5424
Morian et al. (2004)	1624	Cross et al. (2010)	2780	Loria et al. (2008)	5550
Morian et al. (2004)	1661	Morian et al. (2004)	2834	Morian et al. (2004)	5956
Cross and Jakatimath (2007)	1700	Scholz et al. (1991a)	2850	Kim et al. (2010)	6200
Scholz et al. (1991a)	1750	Morian et al. (2004)	2883	Morian et al. (2004)	6325
Morian et al. (2004)	1766	Morian et al. (2004)	2901	Cross et al. (2002)	7100
Kim et al. (2010)	1770	Morian et al. (2004)	2921	Charmot and Romero (2010)	8000
Scholz et al. (1991b)	1800	Morian et al. (2004)	2950	Scholz et al. (1991b)	8300
Mottola and Chmiel (1990)	1820	Loria et al. (2008)	2950	Chan et al. (2010b)	8994
Kim et al. (2010)	1850	Cross et al. (2002)	2985	Morian et al. (2004)	13138
Badaruddin and McDaniel (1992)	1900	Babaei and Walter (1989)	3050	Morian et al. (2004)	13414
Jahren et al. (1998)	1920	Scholz et al. (1991b)	3100	Loria et al. (2008)	14500
Kim et al. (2010)	1980	Morian et al. (2004)	3109	Charmot and Romero (2010)	18200
Morian et al. (2004)	1982	Morian et al. (2004)	3150	Charmot and Romero (2010)	22000
Scholz et al. (1991b)	2000	Morian et al. (2004)	3194	Scholz et al. (1991b)	23000
Scholz et al. (1991b)	2000	Charmot and Romero (2010)	3200	Diefenderfer et al. (2012)	23000
Loria et al. (2008)	2000	Lee and Kim (2006)	3250	Loizos et al. (2007)	40000
Cross et al. (2010)	2120	Kim and Lee (2008)	3250		
Scholz et al. (1991b)	2200	Scholz et al. (1991b)	3350		
Scholz et al. (1991b)	2200	Scholz et al. (1991b)	3400		
Cross et al. (2010)	2220	Scholz et al. (1991b)	3400		

FDR Reference	AADT
Nantung et al. (2011)	600
Johnson et al. (2006)	1100
Diefenderfer and Apeagyei (2010)	1500
Diefenderfer and Apeagyei (2010)	1800
Mallick et al. (2002)	1900
Pickett (1991)	2000
Lewis et al. (2006)	3375
Diefenderfer and Apeagyei (2010)	3700
Kroge et al. (2009)	4260

Part 2: In-Place Recycling Layer Thicknesses

Recycled layer thicknesses ($t_{recycled}$) in mm are shown below for CIR and FDR. This list is composed of values from 35 CIR references and 10 FDR references. Thicknesses for the 185 CIR values are generally much less than that of the 16 FDR values. The mean values for CIR and FDR are 83 and 216, respectively.

	<i>t</i> _{recycled}	Scholz et al.
CIR Reference	(mm)	Scholz et al.
Scholz et al. (1991b)	25	Scholz et al.
Scholz et al. (1991b)	38	Scholz et al.
Scholz et al. (1991b)	38	Scholz et al.
Scholz et al. (1991b)	38	Scholz et al.
Scholz et al. (1991b)	38	Scholz et al.
Rogge et al. (1992)	38	Scholz et al.
Kim et al. (2010)	446	Rogge et al. (
Scholz et al. (1991b)	50	Rogge et al. (
Scholz et al. (1991b)	50	Sebaaly et al.
Scholz et al. (1991b)	50	Sebaaly et al.
Kim et al. (2010)	51	Loria et al. (2
Scholz et al. (1991b)	51	Loria et al. (2
Scholz et al. (1991b)	51	Loria et al. (2
Scholz et al. (1991b)	51	Loria et al. (2
Scholz et al. (1991b)	51	Loria et al. (2
Scholz et al. (1991b)	51	Scholz et al.
Scholz et al. (1991b)	51	Scholz et al.
Scholz et al. (1991b)	51	Babaei and W
Scholz et al. (1991b)	51	Bradbury et a
Scholz et al. (1991b)	51	Gumbert and
Scholz et al. (1991b)	51	Kim and Lee
Scholz et al. (1991b)	51	Yan et al. (20
Scholz et al. (1991b)	51	Yan et al. (20

er		trecycled
	CIR Reference	(mm)
\ :	Scholz et al. (1991b)	51
_{cled}) in mm	Scholz et al. (1991b)	51
$^{\circ}$ DK. THIS	Scholz et al. (1991b)	51
references	Scholz et al. (1991b)	51
values are	Scholz et al. (1991b)	51
he 16 FDR	Scholz et al. (1991b)	51
R and FDR	Scholz et al. (1991b)	51
	Scholz et al. (1991b)	51
	Scholz et al. (1991b)	51
<i>t</i> recycled	Scholz et al. (1991b)	51
(mm)	Scholz et al. (1991b)	51
25	Scholz et al. (1991b)	51
38	Scholz et al. (1991b)	51
38	Scholz et al. (1991b)	51
38	Scholz et al. (1991b)	51
38	Scholz et al. (1991b)	51
38	Scholz et al. (1991b)	51
446	Rogge et al. (1992)	51
50	Rogge et al. (1992)	51
50	Sebaaly et al. (2004)	51
50	Sebaaly et al. (2004)	51
51	Loria et al. (2008)	51
51	Loria et al. (2008)	51
51	Loria et al. (2008)	51
51	Loria et al. (2008)	51
51	Loria et al. (2008)	51
51	Scholz et al. (1991b)	60
51	Scholz et al. (1991b)	60
51	Babaei and Walter (1989)	63
51	Bradbury et al. (1991)	75
51	Gumbert and Harris (1993)	75
51	Kim and Lee (2008)	75
51	Yan et al. (2009)	75
51	Yan et al. (2009)	75

CIR Reference	<i>t_{recycled}</i> (mm) CIR Reference		t _{recycled} (mm)	CIR Reference	t _{recycled} (mm)
Yan et al. (2009)	75	Morian et al. (2004)	76	Kim et al. (2010)	102
Charmot and Romero (2010)	75	Morian et al. (2004)	76	Kim et al. (2010)	102
Charmot and Romero (2010)	75	Morian et al. (2004)	76	Kim et al. (2010)	102
Kandhal and Koehler (1987)	76	Morian et al. (2004)	76	Kim et al. (2010)	102
Kandhal and Koehler (1987)	76	Morian et al. (2004)	76	Kim et al. (2010)	102
Scholz et al. (1991b)	76	Sebaaly et al. (2004)	76	Kim et al. (2010)	102
Jahren et al. (1998)	76	Loria et al. (2008)	76	Kim et al. (2010)	102
Jahren et al. (1998)	76	Loria et al. (2008)	76	Kim et al. (2010)	102
Cross et al. (2002)	76	Loria et al. (2008)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Henault and Kilpatrick (2009)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Johnston (2011)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Kim et al. (2010)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Kim et al. (2010)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Kim et al. (2010)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Kim et al. (2010)	76	Kim et al. (2010)	102
Morian et al. (2004)	76	Martinez et al. (2007)	80	Anderson (1985)	102
Morian et al. (2004)	76	Kim et al. (2010)	81	HWYS (1986)	102
Morian et al. (2004)	76	Cross et al. (2002)	87	Dudley et al. (1987)	102
Morian et al. (2004)	76	Bandyopadhyay et al. (1982)	88	Babaei and Walter (1989)	102
Morian et al. (2004)	76	Charmot and Romero (2010)	89	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim et al. (2010)	91	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim et al. (2010)	91	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim and Lee (2008)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Charmot and Romero (2010)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Charmot and Romero (2010)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Charmot and Romero (2010)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Charmot and Romero (2010)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim and Lee (2011)	100	Jahren et al. (1998)	102
Morian et al. (2004)	76	Steward (1987)	101	Jahren et al. (1998)	102
Morian et al. (2004)	76	Babaei and Walter (1989)	101	Jahren et al. (1998)	102
Morian et al. (2004)	76	Scholz et al. (1991a)	101	Jahren et al. (1998)	102
Morian et al. (2004)	76	Scholz et al. (1991a)	101	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim et al. (2010)	102	Jahren et al. (1998)	102
Morian et al. (2004)	76	Kim et al. (2010)	102	Jahren et al. (1998)	102

CIR Reference	t _{recycled} (mm)	FDR Reference	t _{recycled} (mm)
Jahren et al. (1998)	102	Lewis et al. (2006)	150
Jahren et al. (1999)	102	Dai and Thomas (2011)	150
Cross et al. (2002)	102	Pickett (1991)	152
Cross et al. (2002)	102	Shepard et al. (1991)	152
Cross et al. (2002)	102	Johnson et al. (2006)	152
Cross et al. (2002)	102	Wolfe et al. (2009)	200
Morian et al. (2004)	102	Miller et al. (2010)	200
Morian et al. (2004)	102	Dai and Thomas (2011)	200
Morian et al. (2004)	102	Nantung et al. (2011)	200
Morian et al. (2004)	102	Diefenderfer and Apeagyei (2010)	250
Babaei and Walter (1989)	107	Diefenderfer and Apeagyei (2010)	250
Chan et al. (2010b)	110	Diefenderfer and Apeagyei (2010)	250
Babaei and Walter (1989)	112	Diefenderfer and Apeagyei (2010)	250
Dudley et al. (1987)	115	Wolfe et al. (2009)	300
Kandhal and Koehler (1987)	125	Dai and Thomas (2011)	300
Babaei and Walter (1989)	125	Pickett (1991)	305
McDaniel (1988)	127		
Forsberg et al. (2002)	127		
Diefenderfer et al. (2012)	127		
Spelman (1983)	150		
Badaruddin and McDaniel (1992)	150		
Kim and Lee (2008)	150		
Mottola and Chmiel (1990)	152		
Spelman (1983)	200		
Charmot and Romero (2010)	200		

229

HWYS (1986)

Part 3: In-Place Recycling Moisture Contents

Recycled layer moisture contents are shown below for CIR and FDR. For CIR, ω_{mix} (%) is reported which corresponds to the mixing moisture content reported by the source. For FDR, OMC is reported which corresponds to the optimum moisture content reported by the source. ω_{mix} and OMC refer to total moisture content including add water, RAP moisture, and water present in emulsion. For practical purposes, the significance of these two values as it relates to this information is the same. This list is composed of values from 43 CIR references and 8 FDR references. Moisture contents for the 108 CIR values are generally much less than that of the 103 FDR values. The mean values for CIR and FDR are 3.5 and 7.2, respectively.

CIR Reference	ω_{mix} (%)
Steward (1987)	0.5
Mamlouk (1983)	1.0
Babaei and Walter (1989)	1.0
Cohen et al. (1989)	1.0
Epps (1990)	1.0
Khosla and Bienvenu (1996)	1.0
Mallela et al. (2006)	1.5
Mallela et al. (2006)	1.8
Mallela et al. (2006)	1.8
Mallela et al. (2006)	1.9

CIR Reference	ω_{mix} (%)	CIR Reference ω_{mix} (%)		CIR Reference	ω_{mix} (%)	
Mallela et al. (2006)	1.9	Babaei and Walter (1989)	3.5	Jenkins and Yu (2009)	4.0	
Babaei and Walter (1989)	2.0	Lee et al. (2000)	3.5	Kim et al. (2011)	4.0	
Epps (1990)	2.0	Cross et al. (2002)	3.5	Mallela et al. (2006)	4.3	
Cross et al. (2002)	2.0	Cross and Jakatimath (2007)	3.6	McDaniel (1968)	4.4	
Mallela et al. (2006)	2.0	Pasetto et al. (2004)	3.9	Babaei and Walter (1989)	4.4	
Mallela et al. (2006)	2.0	Kim and Lee (2006)	3.9	Scholz et al. (1991a)	4.5	
Dai et al. (2008)	2.0	Kandhal and Koehler (1987)	4.0	Lee and Kim (2003)	4.5	
Cross et al. (2002)	2.1	Babaei and Walter (1989)	4.0	Pasetto et al. (2004)	4.5	
Lee et al. (2000)	2.2	Scholz et al. (1991a)	4.0	Du and Cross (2006)	4.5	
Yan et al. (2009)	2.4	Salomon and Newcomb (2000)	4.0	Cross and Jakatimath (2007)	4.7	
Yan et al. (2009)	2.4	Salomon and Newcomb (2000)	4.0	Pasetto et al. (2004)	5.0	
Babaei and Walter (1989)	2.5	Salomon and Newcomb (2000)	4.0	Pasetto et al. (2004)	5.0	
Bradbury et al. (1991)	2.5	Salomon and Newcomb (2000)	4.0	Kim and Lee (2006)	5.0	
Kim and Lee (2008)	2.5	Pasetto et al. (2004)	4.0	Carter et al. (2010)	5.0	
Santagata et al. (2010)	2.5	Sebaaly et al. (2004)	4.0	Kim and Lee (2006)	5.1	
Cross et al. (2002)	2.6	Sebaaly et al. (2004)	4.0	Babaei and Walter (1989)	6.0	
Yan et al. (2009)	2.6	Sebaaly et al. (2004)	4.0	Pasetto et al. (2004)	6.0	
Green and Fini (2011)	2.7	Du and Cross (2006)	4.0	Yao et al. (2011)	6.4	
Wood et al. (1988)	3.0	Du and Cross (2006)	4.0	Carter et al. (2010)	6.5	
Cross and Fager (1995)	3.0	Lee and Kim (2006)	4.0	Carter et al. (2010)	6.5	
Cross (1999)	3.0	Kim and Lee (2007)	4.0	Carter et al. (2010)	6.5	
Cross (2000)	3.0	Kim et al. (2007)	4.0	Crispino and Brovelli (2011)	7.0	
Cross (2000)	3.0	Kim et al. (2007)	4.0	Cross and Fager (1995)	8.0	
Cross (2000)	3.0	Kim et al. (2007)	4.0	Cross and Fager (1995)	8.0	
Lee et al. (2000)	3.0	Kim et al. (2007)	4.0			
Lee et al. (2000)	3.0	Kim et al. (2007)	4.0			
Lee et al. (2000)	3.0	Kim et al. (2007)	4.0			
Cross and Jakatimath (2007)	3.0	Kim et al. (2007)	4.0			
Martinez et al. (2007)	3.0	Lee et al. (2007)	4.0			
Kim et al. (2011)	3.0	Dai et al. (2008)	4.0			
Cross and Jakatimath (2007)	3.1	Kim and Lee (2008)	4.0			
Cross and Jakatimath (2007)	3.1	Lee and Im (2008)	4.0			
Cross et al. (2002)	3.2	Loria et al. (2008)	4.0			
Cross et al. (2002)	3.4	Benson et al. (2009)	4.0			
Yao et al. (2011)	3.4	Henault and Kilpatrick (2009)	4.0			

FDR Reference	<i>OMC</i> (%)	FDR Reference	<i>OMC</i> (%)	FDR Reference	<i>OMC</i> (%)
Bang et al. (2011)	4.5	Bang et al. (2011)	6.7	Bang et al. (2011)	7.7
Johnson et al. (2006)	4.8	Bang et al. (2011)	6.8	Bang et al. (2011)	7.8
Bang et al. (2011)	5.0	Bang et al. (2011)	6.8	Bang et al. (2011)	7.8
Mallick et al. (2002)	5.0	Bang et al. (2011)	6.9	Bang et al. (2011)	7.8
Mallick et al. (2002)	5.0	Mallick et al. (2002)	7.0	Bang et al. (2011)	7.9
Mallick et al. (2002)	5.0	Bang et al. (2011)	7.0	Bang et al. (2011)	7.9
Bang et al. (2011)	5.1	Bang et al. (2011)	7.0	Bang et al. (2011)	7.9
Bang et al. (2011)	5.2	Bang et al. (2011)	7.0	Bang et al. (2011)	8.1
Bang et al. (2011)	5.2	Bang et al. (2011)	7.1	Thomas and May (2007)	8.1
Bang et al. (2011)	5.2	Bang et al. (2011)	7.1	Bang et al. (2011)	8.1
Bang et al. (2011)	5.3	Bang et al. (2011)	7.1	Bang et al. (2011)	8.1
Johnson et al. (2006)	5.3	Bang et al. (2011)	7.2	Yuan et al. (2011)	8.2
Bang et al. (2011)	5.5	Bang et al. (2011)	7.2	Bang et al. (2011)	8.3
Johnson et al. (2006)	5.6	Bang et al. (2011)	7.2	Bang et al. (2011)	8.3
Bang et al. (2011)	5.8	Bang et al. (2011)	7.3	Bang et al. (2011)	8.6
Bang et al. (2011)	5.8	Bang et al. (2011)	7.3	Bang et al. (2011)	8.6
Bang et al. (2011)	5.9	Bang et al. (2011)	7.3	Bang et al. (2011)	8.6
Johnson et al. (2006)	6.0	Bang et al. (2011)	7.3	Bang et al. (2011)	8.6
Johnson et al. (2006)	6.0	Bang et al. (2011)	7.3	Bang et al. (2011)	8.9
Bang et al. (2011)	6.0	Bang et al. (2011)	7.3	Bang et al. (2011)	8.9
Bang et al. (2011)	6.1	Bang et al. (2011)	7.3	Bang et al. (2011)	9.0
Bang et al. (2011)	6.1	Bang et al. (2011)	7.3	Bang et al. (2011)	9.0
Besseche et al. (2009)	6.2	Bang et al. (2011)	7.4	Bang et al. (2011)	9.2
Bang et al. (2011)	6.3	Bang et al. (2011)	7.4	Bang et al. (2011)	9.2
Bang et al. (2011)	6.3	Bang et al. (2011)	7.4	Bang et al. (2011)	9.2
Bang et al. (2011)	6.3	Bang et al. (2011)	7.4	Bang et al. (2011)	9.3
Yuan et al. (2011)	6.3	Hilbrich and Scullion (2008)	7.5	Bang et al. (2011)	9.5
Bang et al. (2011)	6.5	Bang et al. (2011)	7.5	Bang et al. (2011)	9.8
Bang et al. (2011)	6.5	Bang et al. (2011)	7.5	Lewis et al. (2006)	9.8
Bang et al. (2011)	6.5	Bang et al. (2011)	7.5	Bang et al. (2011)	9.8
Bang et al. (2011)	6.5	Bang et al. (2011)	7.6	Liu and Nie (2010)	10.2
Bang et al. (2011)	6.6	Bang et al. (2011)	7.6	Bang et al. (2011)	10.3
Bang et al. (2011)	6.6	Bang et al. (2011)	7.6	Bang et al. (2011)	10.3
Bang et al. (2011)	6.7	Bang et al. (2011)	7.7		
Bang et al. (2011)	6.7	Bang et al. (2011)	7.7		

Part 4: In-Place Recycling Binders

Recycled layer binder dosages are shown below for CIR and FDR. This list is composed of values from 61 CIR references and 16 FDR references. Dosages of any binder for the 198 CIR values are generally less than that of the 117 FDR values. Emulsion use is observed more in CIR while cement and fly ash are observed more in FDR. Approximately 18% and 15% of CIR and FDR mixtures used combination binders, but these blends were typically dominated by a primary binder with a small dosage of a secondary binder as opposed to a balanced blend of both binders (e.g. 2.7% emulsion plus 1% cement). FAC refers to foamed asphalt cement, and Hyd. Lime refers to hydrated lime. Dosages are reported as a percentage of RAP mass.

CIR Reference	Emulsion	FAC	Cement	Hyd. Lime	Fly Ash
Scholz et al. (1991b)	0.3				
Scholz et al. (1991b)	0.5				
Scholz et al. (1991b)	0.5				
Rogge et al. (1992)	0.5				
Scholz et al. (1991b)	0.6				
Babaei and Walter (1989)	0.8				
Cross and Fager (1995)	0.9				5.0
Scholz et al. (1991b)	0.9				
Cross and Young (1997)	1.0			1.5	
Sebaaly et al. (2004)	1.0			1.5	
Cross and Fager (1995)	1.0				5.0
Scholz et al. (1991a)	1.0				
Scholz et al. (1991b)	1.0				
Scholz et al. (1991b)	1.0				
Scholz et al. (1991b)	1.0				
Scholz et al. (1991b)	1.0				

CIR Reference	Emulsion	FAC	Cement	Hyd. Lime	Fly Ash
Scholz et al. (1991b)	1.0				
Scholz et al. (1991b)	1.0				
Rogge et al. (1992)	1.0				
Rogge et al. (1992)	1.0				
Rogge et al. (1992)	1.0				
Cross and Fager (1995)	1.0				
Cross and Ramaya (1995)	1.0				
Cross and Young (1997)	1.0				
Cross (1999)	1.0				
Mallela et al. (2006)	1.0				
Mallela et al. (2006)	1.0				
Kim and Lee (2010)	1.0				
Kim and Lee (2010)	1.0				
Scholz et al. (1991b)	1.1				
Rogge et al. (1992)	1.1				
Cross et al. (2002)	1.1				
Mallela et al. (2006)	1.1				
Mallela et al. (2006)	1.1				
Mallela et al. (2006)	1.1				
Dai et al. (2008)	1.2				
Scholz et al. (1991b)	1.2				
Scholz et al. (1991b)	1.2				
Scholz et al. (1991b)	1.2				
Scholz et al. (1991b)	1.2				
Lee et al. (2000)	1.2				
Lee et al. (2000)	1.2				
Lee et al. (2000)	1.2				
Mallela et al. (2006)	1.2				
Bradbury et al. (1991)	1.3				
Scholz et al. (1991b)	1.3				
Scholz et al. (1991b)	1.3				

	mulsion	AC	ement	yd. ime	ly Ash		mulsion	AC	ement	yd. ime	ly Ash
CIR Reference	Ĥ	H	U	ΗÜ	E	CIR Reference	E	H	C	H	E
Kazmierowski et al. (1992)	1.3					Cross (2000)	1.5				
Mallela et al. (2006)	1.3					Forsberg et al. (2002)	1.5				
Mallela et al. (2006)	1.3					Bemanian et al. (2006)	1.5				
Mallela et al. (2006)	1.3					Du and Cross (2006)	1.5				
Mallela et al. (2006)	1.3					Mallela et al. (2006)	1.5				
Sebaaly et al. (2004)	1.4			1.0		Scholz et al. (1991b)	1.6				
Scholz et al. (1991b)	1.4					Scholz et al. (1991b)	1.6				
Scholz et al. (1991b)	1.4					Scholz et al. (1991b)	1.6				
Rogge et al. (1992)	1.4					Mallela et al. (2006)	1.6				
Lee et al. (2000)	1.4					Scholz et al. (1991b)	1.7				
Cross (2000)	1.5			1.0		Scholz et al. (1991b)	1.7				
Du and Cross (2006)	1.5			1.5		Scholz et al. (1991b)	1.7				
Thomas et al. (2000)	1.5			1.5		Scholz et al. (1991b)	1.7				
Cross et al. (2002)	1.5			1.5		Moore et al. (2011)	1.8		0.8		
Du and Cross (2006)	1.5					Moore et al. (2011)	1.8			0.8	
HWYS (1986)	1.5					Emery (2006)	1.8				
Steward (1987)	1.5					Scholz et al. (1991b)	1.8				
Scholz et al. (1991b)	1.5					Green and Fini (2011)	1.9				
Scholz et al. (1991b)	1.5					Cross and Young (1997)	1.9				7.0
Scholz et al. (1991b)	1.5					Scholz et al. (1991a)	1.9				
Scholz et al. (1991b)	1.5					Anderson (1985)	2.0				
Scholz et al. (1991b)	1.5					Kandhal and Koehler (1987)	2.0				
Scholz et al. (1991b)	1.5					Kandhal and Koehler (1987)	2.0				
Scholz et al. (1991b)	1.5					Babaei and Walter (1989)	2.0				
Scholz et al. (1991b)	1.5					Babaei and Walter (1989)	2.0				
Scholz et al. (1991b)	1.5					Cross et al. (2002)	2.0				
Scholz et al. (1991b)	1.5					Cross and Jakatimath (2007)	2.0				
Rogge et al. (1992)	1.5					Cross et al. (2002)	2.1				
Rogge et al. (1992)	1.5					Cross et al. (2002)	2.2			1.6	
Rogge et al. (1992)	1.5					Scholz et al. (1991b)	2.2				
Rogge et al. (1992)	1.5					Yao et al. (2011)	2.3		1.0		

	mulsion	AC	lement	lyd. ime	ly Ash		mulsion	AC	ement
CIR Reference	F	H	0	H	Ţ	CIR Reference	F	Ĩ	0
Sebaaly et al. (2004)	2.5			1.0		Yan et al. (2009)	3.8		2.0
Mamlouk (1983)	2.5					Yan et al. (2009)	4.0		2.0
McDaniel (1988)	2.5					Mallela et al. (2006)	4.0		
Babaei and Walter (1989)	2.5					Cohen et al. (1989)	5.0		
Cross et al. (2002)	2.5					Babaei and Walter (1989)	5.5		
Scholz et al. (1991b)	2.6					Dudley et al. (1987)	6.8		
Carter et al. (2010)	2.7		1.0			Dai et al. (2008)		1.0	
Carter et al. (2010)	2.7		1.0			Jenkins and Yu (2009)		1.0	
Carter et al. (2010)	2.7		1.0			Chan et al. (2010a)		1.0	
Carter et al. (2010)	2.7		1.0			Moore et al. (2011)		1.3	0.8
Cross and Jakatimath (2007)	2.7					Moore et al. (2011)		1.3	
Morian et al. (2004)	2.8					Kim et al. (2007)		1.7	
Scholz et al. (1991b)	2.8					Kim and Lee (2008)		1.8	
Gamache and Pluta (2005)	3.0		1.0			Kim et al. (2007)		1.9	
Crispino and Brovelli (2011)	3.0		2.0			Diefenderfer et al. (2012)		2.0	1.0
Kim et al. (2011)	3.0					Kim et al. (2011)		2.0	
Kandhal and Koehler (1987)	3.0					Lee and Kim (2006)		2.0	
Kandhal and Koehler (1987)	3.0					Kim and Lee (2007)		2.0	
Gamache and Pluta (2005)	3.0					Lee et al. (2007)		2.0	
Cross and Jakatimath (2007)	3.0					Kim and Lee (2008)		2.0	
Babaei and Walter (1989)	3.2					Kim and Lee (2008)		2.0	
Babaei and Walter (1989)	3.3					Loria et al. (2008)		2.0	
Forsberg et al. (2002)	3.3					Henault and Kilpatrick (2009)		2.0	
Yao et al. (2011)	3.5		1.0			Jenkins and Yu (2009)		2.0	
Santagata et al. (2010)	3.5		2.5			Kim et al. (2007)		2.1	
Babaei and Walter (1989)	3.5					Kim et al. (2007)		2.1	
Martinez et al. (2007)	3.5					Kim et al. (2007)		2.1	
Cross and Jakatimath (2007)	3.6					Plati and Papavasilio (2011)		2.3	1.0
Cross and Jakatimath (2007)	3.6					Kim et al. (2007)		2.3	
Mamlouk (1983)	3.7					Kim et al. (2007)		2.3	
Yan et al. (2009)	3.8		2.0			Loizos et al. (2007)		2.5	1.0

11

Fly Ash

Hyd. Lime

0.8

CIR Reference	Emulsion	FAC	Cement	Hyd. Lime	Fly Ash	
Pasetto et al. (2004)		2.5	1.5			FDR Referen
Lee and Kim (2003)		2.5				Dai and Thomas
Kim and Lee (2008)		2.5				Nantung et al. (2
Lee and Im (2008)		2.5				Wolfe et al. (200
Pasetto et al. (2004)		3.0	2.0			Wolfe et al. (200
Pasetto et al. (2004)		3.0	2.0			Mallick et al. (20
Benson et al. (2009)		3.0				Bang et al. (2011
Loizos and Papavasiliou (2006)		3.2	1.0			Bang et al. (2011
Loizos et al. (2007)		3.2	1.0			Dai and Thomas
Pasetto et al. (2004)		3.5	2.0			Quick and Guthr
Pasetto et al. (2004)		3.5	2.5			Mallick et al. (20
Pasetto et al. (2004)		4.5	3.0			Mallick et al. (20
Cross et al. (2010)			0.5			Diefenderfer and
Yan et al. (2009)			2.0			Thomas and May
Berthelot et al. (2010)			2.0			Hilbrich and Scu
Diefenderfer et al. (2012)			3.0			Dai and Thomas
Cross and Young (1997)					3.0	Quick and Guthr
Cross and Fager (1995)					5.0	Bang et al. (2011
Cross and Fager (1995)					7.0	Besseche et al. (2
Thomas et al. (2000)					10.0	Kroge et al. (200
Cross (2000)					10.0	Bang et al. (2011
Cross and Young (1997)					11.0	Quick and Guthr
Cross and Young (1997)					15.0	Thomas and May
Cross and Young (1997)					19.0	Bang et al. (2011
Dudley et al. (1987)						Bang et al. (2011
Babaei and Walter (1989)						Bang et al. (2011
Mallela et al. (2006)						Bang et al. (2011
						D' C 1 C 1

FDR Reference	Emulsion	FAC	Cement	Hyd. Lime	Fly Ash
Dai and Thomas (2011)	13				
Nantung et al. (2011)	1.3		3.0		
Wolfe et al. (2009)	1.5		5.0		
Wolfe et al. (2009)	1.4		2.0		
Mallick et al. (2002)	2.2		2.0		
Bang et al. (2011)	3.0			1.0	
Bang et al. (2011)	3.0			1.0	
Daily of all (2011)	3.0				
Outek and Guthrie (2011)	3.0				
Mallick et al. (2002)	3.5			2.0	
Mallick et al. (2002)	3.4			2.0	
Diefenderfer and Apeagyei (2010)	3.5		1.0		
Thomas and May (2007)	3.5		1.0		
Hilbrich and Scullion (2008)	3.7 4.0		1.0		
Dai and Thomas (2011)	4.0		1.0		
$\Omega_{\rm uick}$ and $\Omega_{\rm uthrig}$ (2011)	4.0				
Bang et al. (2011)	4.2			1.0	
Bassacha at al. (2000)	ч.5 4 5			1.0	
Kroge et al. (2009)	4.5				
$\mathbf{R} = \mathbf{R} + $	4.5				
Outek and Guthrie (2011)	4.5				
Thomas and May (2007)	+.0 5 5		1.0		
Bang et al. (2011)	5.5		1.0	1.0	
Bang et al. (2011)	6.0			1.0	
Bang et al. (2011)	0.0	2.5	1.0		
Bang et al. (2011)		2.5	1.0		
Diafondorfor and Apaggyoi (2010)		2.5	1.0		
Bang et al. (2011)		2.7 3.0	1.0		
Bang et al. (2011)		3.0	1.0		
Dang et al. (2011)		3.0 3.5	1.0		
Dalig et al. (2011)		5.5	1.0		

	mulsion	AC	ement	lyd. ime	ly Ash		mulsion	AC	ement	lyd. ime	ly Ash
FDR Reference	E		0	H	Ĩ	FDR Reference	E		0	H	Ĩ
Bang et al. (2011)		3.5				Bang et al. (2011)			5.0		
Johnson et al. (2006)			3.0			Johnson et al. (2006)			6.0		
Bang et al. (2011)			3.0			Lewis et al. (2006)			6.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Bang et al. (2011)			3.0			Bang et al. (2011)			7.0		
Miller et al. (2010)			4.0			Bang et al. (2011)			7.0		
Yuan et al. (2011)			4.0			Wolfe et al. (2009)				4.0	6.0
Mallick et al. (2002)			5.0			Wolfe et al. (2009)				4.0	6.0
Wolfe et al. (2009)			5.0			Liu and Nie (2010)				5.9	11.8
Diefenderfer and Apeagyei (2010)			5.0			Wolfe et al. (2009)					5.0
Diefenderfer and Apeagyei (2010)			5.0			Johnson et al. (2006)					9.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0
Bang et al. (2011)			5.0			Bang et al. (2011)					10.0

FDR Reference	Emulsion	FAC	Cement	Hyd. Lime	Fly Ash
Bang et al. (2011)					10.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					12.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0
Bang et al. (2011)					15.0

Part 5: In-Place Recycling Gradations

Recycled layer gradations (i.e. bulk RAP gradations as opposed to extracted aggregate gradations) are shown below for CIR and FDR. This list is composed of values from 13 CIR references and 4 FDR references. Gradation for the 28 CIR gradations is generally coarser than that of the 10 FDR gradations. Average percent passing the 0.075 mm sieve 0.6% and 7.1% for CIR and FDR, respectively.

					Cross	3				Lee	Lee	Lee	Lee		
OT	D		Scholz	Scholz	and		Lee	Lee	Lee	and	and	and	and	Du and	Cross and
	K	McDaniel	et al.	et al.	Youn	g Cross	et al.	et al.	et al.	Kim	Kim	Kim	Kim	Cross	Jakatimath
Re	ference	(1988)	(1991a)	(1991a) (1997	7) (1999) (2000)) (2000)	(2000)	(2003)	(2003)	(2003)	(2003)	(2006)	(2007)
	25.0 mm	100	95	92	100	100	100	100	98	100	100	100	100	100	100
	19.0 mm	98	89	89	90	97	90	96	92	97	99	97	94	96	97
50	12.5 mm	88	76	82	72	83	76	86	83	86	96	88	77	85	80
sin	9.5 mm	76	62	73	61	70	66	75	72	76	90	78	64	78	66
as	4.75 mm	48	34	45	39	42	43	48	48	51	67	48	30	64	39
ut I	2.36 mm	32			24	23	23	27	29	32	49	35	22	45	25
cer	1.18 mm	22			13	11	16	12	16	20	33	23	15	26	17
er	0.60 mm	15			7	5	9	4	8	10	18	13	8	14	10
8	0.30 mm	9			2	2	4	1	3	3	6	4	3	4	5
	0.15 mm	5.7			1.0	0.4	1.5	0.3	0.8	0.5	1.0	0.8	0.5	0.7	2.0
	0.075 mm	4.2	0.5	1.9	0.6	0.1	0.4	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.7
						***				Ŧ	Ŧ	**			
CI	R	Kim	Kim at al	Kim	Kim	Kim et	Kim	Kim et	Martinez	Lee	Lee	Yan et	Yan et	Yan et	Charmot
CI Re	R ference	Kim et al. (2007)	Kim et al. (2007)	Kim et al. (2007)	Kim et al. (2007)	Kim et al. (2007)	Kim et al. (2007)	Kim et al. (2007)	Martinez et al. (2007)	Lee and Im (2008)	Lee and Im (2008)	Yan et al. (2009)	Yan et al. (2009)	Yan et al. (2009)	Charmot et al. (2013)
CI Re	R ference 25.0 mm	Kim et al. (2007) 100	Kim et al. (2007) 100	Kim et al. (2007) 100	Kim et al. (2007) 100	Kim et al. (2007) 100	Kim et al. (2007) 100	Kim et al. (2007) 100	Martinez et al. (2007) 99	Lee and Im (2008) 100	Lee and Im (2008) 100	Yan et al. (2009) 100	Yan et al. (2009) 100	Yan et al. (2009) 100	Charmot et al. (2013) 98
CI Re	R ference 25.0 mm 19.0 mm	Kim et al. (2007) 100 94	Kim et al. (2007) 100 95	Kim et al. (2007) 100 96	Kim et al. (2007) 100 94	Kim et al. (2007) 100 99	Kim et al. (2007) 100 97	Kim et al. (2007) 100 95	Martinez et al. (2007) 99 96	Lee and Im (2008) 100 93	Lee and Im (2008) 100 93	Yan et al. (2009) 100 88	Yan et al. (2009) 100 91	Yan et al. (2009) 100 93	Charmot et al. (2013) 98 93
CI Re	R ference 25.0 mm 19.0 mm 12.5 mm	Kim et al. (2007) 100 94 80	Kim et al. (2007) 100 95 82	Kim et al. (2007) 100 96 82	Kim et al. (2007) 100 94 80	Kim et al. (2007) 100 99 87	Kim et al. (2007) 100 97 85	Kim et al. (2007) 100 95 82	Martinez et al. (2007) 99 96 83	Lee and Im (2008) 100 93 77	Lee and Im (2008) 100 93 78	Yan et al. (2009) 100 88 67	Yan et al. (2009) 100 91 74	Yan et al. (2009) 100 93 73	Charmot et al. (2013) 98 93 81
CI Re	R <u>ference</u> 25.0 mm 19.0 mm 12.5 mm 9.5 mm	Kim et al. (2007) 100 94 80 68	Kim et al. (2007) 100 95 82 71	Kim et al. (2007) 100 96 82 72	Kim et al. (2007) 100 94 80 68	Kim et al. (2007) 100 99 87 78	Kim et al. (2007) 100 97 85 74	Kim et al. (2007) 100 95 82 71	Martinez et al. (2007) 99 96 83 73	Lee and Im (2008) 100 93 77 63	Lee and Im (2008) 100 93 78 67	Yan et al. (2009) 100 88 67 56	Yan et al. (2009) 100 91 74 61	Yan et al. (2009) 100 93 73 61	Charmot et al. (2013) 98 93 81 65
CI Re	R ference 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm	Kim et al. (2007) 100 94 80 68 37	Kim et al. (2007) 100 95 82 71 40	Kim et al. (2007) 100 96 82 72 46	Kim et al. (2007) 100 94 80 68 40	Kim et al. (2007) 100 99 87 78 50	Kim et al. (2007) 100 97 85 74 49	Kim et al. (2007) 100 95 82 71 42	Martinez et al. (2007) 99 96 83 73 47	Lee and Im (2008) 100 93 77 63 35	Lee and Im (2008) 100 93 78 67 40	Yan et al. (2009) 100 88 67 56 36	Yan et al. (2009) 100 91 74 61 38	Yan et al. (2009) 100 93 73 61 39	Charmot et al. (2013) 98 93 81 65 40
t Passing a D	R ference 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm	Kim et al. (2007) 100 94 80 68 37 22	Kim et al. (2007) 100 95 82 71 40 27	Kim et al. (2007) 100 96 82 72 46 32	Kim et al. (2007) 100 94 80 68 40 27	Kim et al. (2007) 100 99 87 78 50 35	Kim et al. (2007) 100 97 85 74 49 37	Kim et al. (2007) 100 95 82 71 42 29	Martinez et al. (2007) 99 96 83 73 47 27	Lee and Im (2008) 100 93 77 63 35 19	Lee and Im (2008) 100 93 78 67 40 22	Yan et al. (2009) 100 88 67 56 36 21	Yan et al. (2009) 100 91 74 61 38 21	Yan et al. (2009) 100 93 73 61 39 23	Charmot et al. (2013) 98 93 81 65 40 18
cent Passing	R <u>ference</u> 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm	Kim et al. (2007) 100 94 80 68 37 22 8	Kim et al. (2007) 100 95 82 71 40 27 13	Kim et al. (2007) 100 96 82 72 46 32 20	Kim et al. (2007) 100 94 80 68 40 27 14	Kim et al. (2007) 100 99 87 78 50 35 20	Kim et al. (2007) 100 97 85 74 49 37 20	Kim et al. (2007) 100 95 82 71 42 29 15	Martinez et al. (2007) 99 96 83 73 47 27 	Lee and Im (2008) 100 93 77 63 35 19 11	Lee and Im (2008) 100 93 78 67 40 22 12	Yan et al. (2009) 100 88 67 56 36 21 15	Yan et al. (2009) 100 91 74 61 38 21 12	Yan et al. (2009) 100 93 73 61 39 23 17	Charmot et al. (2013) 98 93 81 65 40 18 10
ercent Passing a ID	R ference 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 0.60 mm	Kim et al. (2007) 100 94 80 68 37 22 8 3	Kim et al. (2007) 100 95 82 71 40 27 13 7	Kim et al. (2007) 100 96 82 72 46 32 20 13	Kim et al. (2007) 100 94 80 68 40 27 14 7	Kim et al. (2007) 100 99 87 78 50 35 20 12	Kim et al. (2007) 100 97 85 74 49 37 20 10	Kim et al. (2007) 100 95 82 71 42 29 15 8	Martinez et al. (2007) 99 96 83 73 47 27 7	Lee and Im (2008) 100 93 77 63 35 19 11 7	Lee and Im (2008) 100 93 78 67 40 22 12 6	Yan et al. (2009) 100 88 67 56 36 21 15 9	Yan et al. (2009) 100 91 74 61 38 21 12 5	Yan et al. (2009) 100 93 73 61 39 23 17 10	Charmot et al. (2013) 98 93 81 65 40 18 10 5
Percent Passing a D	R <u>ference</u> 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 0.60 mm 0.30 mm	Kim et al. (2007) 100 94 80 68 37 22 8 3 2	Kim et al. (2007) 100 95 82 71 40 27 13 7 3	Kim et al. (2007) 100 96 82 72 46 32 20 13 5	Kim et al. (2007) 100 94 80 68 40 27 14 7 3	Kim et al. (2007) 100 99 87 78 50 35 20 12 5	Kim et al. (2007) 100 97 85 74 49 37 20 10 3	Kim et al. (2007) 100 95 82 71 42 29 15 8 3	Martinez et al. (2007) 99 96 83 73 47 27 7 3	Lee and Im (2008) 100 93 77 63 35 19 11 7 3	Lee and Im (2008) 100 93 78 67 40 22 12 6 2	Yan et al. (2009) 100 88 67 56 36 21 15 9 6	Yan et al. (2009) 100 91 74 61 38 21 12 5 2	Yan et al. (2009) 100 93 73 61 39 23 17 10 4	Charmot et al. (2013) 98 93 81 65 40 18 10 5 2
Percent Passing a ID	R ference 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 0.60 mm 0.30 mm 0.15 mm	Kim et al. (2007) 100 94 80 68 37 22 8 3 2 2 1.0	Kim et al. (2007) 100 95 82 71 40 27 13 7 3 1.2	Kim et al. (2007) 100 96 82 72 46 32 20 13 5 2.0	Kim et al. (2007) 100 94 80 68 40 27 14 7 3 1.2	Kim et al. (2007) 100 99 87 78 50 35 20 12 5 2.0	Kim et al. (2007) 100 97 85 74 49 37 20 10 3 1.3	Kim et al. (2007) 100 95 82 71 42 29 15 8 3 1.6	Martinez et al. (2007) 99 96 83 73 47 27 7 3 	Lee and Im (2008) 100 93 77 63 35 19 11 7 3 1.5	Lee and Im (2008) 100 93 78 67 40 22 12 6 2 0.7	Yan et al. (2009) 100 88 67 56 36 21 15 9 6 3.0	Yan et al. (2009) 100 91 74 61 38 21 12 5 2 1.0	Yan et al. (2009) 100 93 73 61 39 23 17 10 4 2.0	Charmot et al. (2013) 98 93 81 65 40 18 10 5 2 1.0

FD Ref	R erence	Shepard et al. (1991)	Shepard et al. (1991)	Shepard et al. (1991)	Shepard et al. (1991)	Mallick et al. (2002)	Johnson et al. (2006)	Johnson et al. (2006)	Johnson et al. (2006)	Johnson et al. (2006)	Besseche et al. (2009)
	25.0 mm	100	100	100	100	100	97	99	95	98	100
	19.0 mm	97	100	99	100	100	95	96	91	94	88
50	12.5 mm					87	80	85	77	81	71
sin	9.5 mm					76	67	71	67	68	61
as	4.75 mm					58	45	48	47	44	46
It H	2.36 mm	43	20	34	30	47	32	37	34	32	36
cer	1.18 mm					35	24	27	24	23	29
er	0.60 mm	21	12	17	13	22	17	19	17	16	25
	0.30 mm					12	12	13	12	12	19
	0.15 mm					6.0	9.0	10.0	10.0	9.0	14.0
	0.075 mm	7.0	7.0	7	6.0	3.5	7.9	8.2	8.2	7.4	8.9

REFERENCES

Anderson, D.A., Luhr, D.R., Lahr, M. (1985). Cold, In-Place Recycling of Low-Volume Roads in Susequehanna County Volume I: Technical Report. Final Report FHWA-PA-84-020, Harrisburg, PA.

Babaei, K., Walter, J.P. (1989). Evaluation of the Performance of Cold-Mixed Recycled Asphalt Concrete Pavement In Washington. Final Report FHWA-WA-RD-201.1, Washington, D.C.

Badaruddin, S.R., McDaniel, R.S., (1992). "Cold In-Place Recycling for Rehabilitation and Widening of Low-Volume Flexible Pavements in Indiana," *Transportation Research Record: Journal of the Transportation Research Board*, 1342, 13-19.

Bandyopadhyay, S.S. (1982). "Structural Performance Evaluation of Recycled Pavements by Using Dynamic Deflection Measurements," *Transportation Research Record: Journal of the Transportation Research Board*, 888, 38-43.

Bang, S., Lein, W., Comes, B., Nehl, L., Anderson, J., Kraft, P., deStigter, M., Leibrock, C., Roberts, L., Sebaaly, P., Huft, D. (2011). *Quality Base Material Produced Using Full Depth Reclamation on Existing Asphalt Pavement Structure – Task 4: Development of FDR Mix Design Guide*. Final Report FHWA-HIF-12-015. U.S. Department of Transportation, Washington, D.C.

Bemanian, S., Polish, P., Maurer, G. (2006). "Cold In-Place Recycling and Full-Depth Reclamation Projects by Nevada Department of Transportation," *Transportation Research Record: Journal of the Transportation Research Board*, 1949, Transportation Research Board of the National Academies, 54-71.

Benson, C., Edil, T., Ebrahimi, A., Kootstra, B., Li, L., Bloom, P. (2009). *Appendices to Use of Fly Ash for Reconstruction of Bituminous Roads*. Report No. MN/RC 2009-27A. Minnesota Department of Transportation, St. Paul, Minnesota.

Berthelot, C., Haichert, R., Podborochynski, D., Wandzura, C., Taylor, B., Guenther, D. (2010). "Cement Stabilization of Reclaimed Asphalt Pavement Materials," *Transportation Research Board* 89th Annual Meeting (CD-ROM).

Berthelot, C., Gerbrandt, R., Baker, D. (2000). "Full Depth Cold In-Place Recycling/Stabilization for Low Volume Road Strengthening: A Case Study," *2000 Annual Conference of the Transportation Association of Canada*, Edmonton, Alberta, Oct 1-4.

Besseche, T., Kroge, M., McGlumphy, K. (2009). "Full-Depth Reclamation with Engineered Emulsion in Fairburn, Georgia," *Transportation Research Board* 88th Annual Meeting (CD-ROM).

Bradbury, A., Kazmierowski, T.J., Cheng, S., Raymond, C. (1991). "Cold In-Place Recycling in Ontario – A Case Study," *Proceedings of the 36th Annual Conference of Canadian Technical Asphalt Association*, 153-170.

Carter, A., Feisthauer, B., Lacroix, D., Perraton, D. (2010). "Comparison of Cold In-Place Recycling and Full-Depth Reclamation Materials," *Transportation Research Board* 89^h Annual Meeting, Paper 10-1325.

Chan, S., Lane, B., Kazmierowski, T., Raymond, C., Lee, W. (2010a). "Comparative Performance of Conventional Cold In-place Recycling to Cold In-place Recycling with Expanded Asphalt – Ontario's Experience," *Transportation Research Board* 89^h Annual Meeting, Paper 10-1724.

Chan, P., Tighe, S., Chan, S. (2010b). "Exploring Sustainable Pavement Rehabilitation: Cold-In-Place Recycling with Expanded Asphalt Mix," *Transportation Research Board* 89th Annual Meeting (CD-ROM).

Charmot, S., Romero, P. (2010). "Assessment of Fracture Parameters to Predict Field Cracking Performance of Cold In-Place Recycling Mixtures," *Transportation Research Record: Journal of the Transportation Research Board*, 2155, 34-42.

Charmot, S., Braham, A., Zhang, K. (2013). "Effect of Emulsion Content and Cement Loading on Cold Recycling Mixture Fracture Energy Measured Using the Semi Circular Bending Fracture Test," *Transportation Research Board* 92nd Annual Meeting (CD-ROM).

Cohen, E., Sidess, A., Zoltan, G. (1989). "Performance of A Full-Scale Pavement Using Cold Recycled Asphalt Mixture," *Transportation Research Board: Journal of the Transportation Research Record*, 1228, 88-93.

Crispino, M., Brovelli, C. (2011). "Bitumen Emulsion and Foam Bitumen for Cold Recycled and Bitumen Stabilized Materials: A Comparison Based on Performances, Costs, and Safety," δ^{th} International Conference on Managing Pavement Assets.

Cross, S.A. (1999). "Experimental Cold In-Place Recycling with Hydrated Lime," *Transportation Research Record: Journal of the Transportation Research Board*, 1684, 186-193.

Cross, S.A. (2000). *Evaluation of Cold In-Place Recycled Mixtures on US-283*. Report KS-99-4, Kansas Department of Transportation.

Cross, S.A (2002). Determination of N_{design} for CIR Mixtures Using the Superpave Gyratory Compactor. Final Report FHWA Agreement No. DTFH61-98-X-00095, RMRC Research Project 15, Federal Highway Administration, Washington D.C.

Cross, S.A., Fager, G.A. (1995). "Fly Ash in Cold Recycled Bituminous Pavements," *Transportation Research Record: Journal of the Transportation Research Board*, 1486, 49-56.

Cross, S.A, Jakatimath, Y. (2007). *Evaluation of Cold In-Place Recycling for Rehabilitation of Transverse Cracking of US 412*. Final Report FHWA/OK-07(04), Federal Highway Administration, Washington D.C.

Cross, S.A, Kearney, E.R., Justus, H.G., Chesner, W.H. (2010). *Cold-In-Place Recycling in New York State*. Report No. C-06-21, New York State Department of Transportation, Albany, NY.

Cross, S.A., Ramaya, B.M. (1995). Evaluation of Cold In-Place Recycling in Kansas. *Sixth International Conference on Low-Volume Road*, Transportation Research Board of the National Academies, Washington, D.C., pp. 195-206.

Cross, S.A., Young, D.A. (1997). "Evaluation of Type C Fly Ash in Cold In-Place Recycling," *Transportation Research Record: Journal of the Transportation Research Board*, 1583, 82-90.

Dai, S., Skok, G., Westover, T., Labuz, J., Lukanen, E. (2008). *Pavement Rehabilitation Selection*. Report No. MN/RC 2008-06. Minnesota Department of Transportation, St. Paul, Minnesota.

Dai, S., Thomas, T. (2011). "Response and Performance of Flexible Pavement Test Sections with Stabilized Full Depth Reclamation Base at MnRoad," *Transportation Research Board 90th Annual Meeting* (CD-ROM), Washington, D.C., Jan 23-27, Paper 11-2020.

Diefenderfer, B.K., Apeagyei, A.K. (2010). "Structural Evaluation of Full-Depth Reclamation Trials in Virginia," *Transportation Research Board* 89th Annual Meeting (CD-ROM), Washington, D.C., Jan 10-14, Paper 10-1286.

Diefenderfer, B., Apeagyei, A., Gallo, A., Dougald, L., Weaver, C. (2012). "In-Place Pavement Recycling on I-81 in Virginia," *Transportation Research Record: Journal of the Transportation Research Board*, 2306, 21-27.

Du, J., Cross, S.A. (2006). "Rut Depth Prediction Model for Cold In-Place Recycled Mixtures by Gray System," *Transportation Research Board 85th Annual Meeting* (CD-ROM), Washington, D.C., Jan 22-26, Paper 06-0281.

Dudley, S.W., Majidzadeh, K., Kaloush, K. (1987). "The Recycling of Cold-Mix, In-Place Asphalt for Low Volume Roads in Ohio," *Transportation Research Record: Journal of the Transportation Research Board*, 1106, 163-172.

Emery, J.J. (2006). Practical Experience with Cold In-Place Asphalt Recycling and Foamed Asphalt Full Depth Reclamation. *Proceedings of the Annual Conference of Canadian Technical Asphalt Association*, Toronto, Ontario, pp. 423-444

Epps, J.A. (1990). *Cold Recycled Bituminous Concrete Using Bituminous Materials*. NCHRP Synthesis 160, Transportation Research Board, Washington, D.C.

Forsberg, A.F., Lukanen, E., Thomas, T. (2002). "Engineered Cold In-Place Recycling Project," *Transportation Research Record: Journal of the Transportation Research Board*, 1813, 111-123.

Gamache, R., Pluta, S. (2005). A Non Destructive Gauge for Measurement of Density and Moisture of Recycled Materials. *2005 International Symposium on Pavement Recycling*, Paper 056-01. Sao Paulo, Brazil, Mar 14-16, pp. 1-13.

Green, K., Fini, E. (2011). "Performance of Reflective Crack Mitigation Strategies on Cracked Flexible Pavements," *Transportation Research Board* 90th Annual Meeting (CD-ROM), Washington, D.C., Jan 23-27, Paper 11-3480.

Gumbert, R., Harris, G. (1993). *Field Evaluation of Cold In-Place Recycling of Asphalt Concrete*. Report No. HR-303. Iowa Department of Transportation, Ames, IA.

Henault, J.W., Kilpatrick, D.J. (2009). *Field Evaluation of a Cold In-Place Recycled Base Overlaid with Hot-Mix Asphalt*. Report No. CT-2259-F-09-2. Connecticut Department of Transportation, Newington, CT.

Hilbrich, S.L., Scullion, T. (2008). "Evaluation of the Laboratory Mix Design and Field Performance of an Asphalt Emulsion and Cement Stabilized Full-Depth Reclamation Project in Texas," *Transportation Research Board* 87th Annual Meeting (CD-ROM), Washington, D.C., Jan 13-17, Paper 08-2439.

HWYS. (1986). "Asphalt Pavement Cold Recycled in Two Layers," *Highways and Heavy Construction*, Vol. 129, Issue 4, 1986. pp. 62-64.

Jahren, C.T., Ellsworth, B.J., Cawley, B., Bergeson, K. (1998). *Review of Cold In-Place Recycled Asphalt Concrete Projects*. Iowa DOT Project HR-392. Iowa Department of Transportation, Ames, IA.

Jahren, C.T., Ellsworth, B.J., Bergeson, K. (1999). "Constructability Test for Cold In-Place Asphalt Recycling," *Journal of Construction Engineering and Management*, Vol. 125, No. 5, pp. 325-329.

Jenkins, K.J., Yu, M. (2009). Cold Recycling Techniques Using Bitumen Stabilization: Where is This Technology Going? *GeoHunan International Conference*, Changsha Hunan, China, Aug 3-6, pp. 191-200.

Johnson, D.R., Jackson, N.M., Sauer, T.M. (2006). Field Evaluation of Pavement Rehabilitation Using Full-Depth Reclamation. 2006 Airfield and Highway Pavement Specialty Conference, American Society of Civil Engineers, Reston, VA.

Johnston, K. (2011). Cold In-Place Asphalt Recycling. *Pavement Management & Reconstruction*, Vol. 26, Issue 2, pp. 12-14.

Kandhal, P.S., Koehler, W.C. (1987). "Cold Recycling of Asphalt Pavements on Low-Volume Roads," *Transportation Research Record: Journal of the Transportation Research Board*, 1106, 156-163.

Kazmierowski, T.J., Bradbury, A., Cheng, S., Raymond, C. (1992). "Performance of Cold In-Place Recycling in Ontario," *Transportation Research Record: Journal of the Transportation Research Board*, 1337, 28-36.

Khosla, N.P., Bienvenu, M.E. (1996). *Design and Evaluation of Cold In-Place Recycled Pavements*. Report No. FHWA/NC/97-006. North Carolina Department of Transportation, Raleigh, North Carolina.

Kim, Y., Lee, H. (2006). "Development of Mix Design Procedure for Cold In-Place Recycling with Foamed Asphalt," *Journal of Materials in Civil Engineering*, Vol. 18, No. 1, pp 116-124.

Kim, Y., Lee, H. (2007). "Determination of Dynamic Modulus of Cold In-Place Recycling Mixture with Foamed Asphalt Using New Simple Performance Testing Equipment," *Transportation Research Board 86th Annual Meeting* (CD-ROM), Washington, D.C., Jan 21-25, Paper 07-1322.

Kim, Y., Lee, H. (2008). "Influence of Reclaimed Asphalt Pavement Temperature on Mix Design Process of Cold In-Place Recycling Using Foamed Asphalt," *Transportation Research Board* 87^h *Annual Meeting* (CD-ROM), Washington, D.C., Jan 13-17, Paper 08-3028.

Kim, Y., Lee, H. (2010). "Performance Evaluation of Cold In-Place Recycling Mixtures Using Emulsified Asphalt," *Transportation Research Board* 89th Annual Meeting (CD-ROM), Washington, D.C.

Kim, Y., Lee, H. (2011). "Measurements of Moisture Condition of Cold In-Place Recycling Layer," *Transportation Research Board 90th Annual Meeting* (CD-ROM.), Washington, D.C., Jan 23-27, Paper 11-3129.

Kim, Y., Lee, H., Heitzman, M. (2007). "Validation of New Mix Design Procedure for Cold In-Place Recycling with Foamed Asphalt," *Journal of Materials in Civil Engineering*, Vol. 19, No. 11, pp. 1000-1010.

Kim, J., Lee, H., Jahren, C.T., Heitzman, M., Chon, D. (2010). "Long-Term Field Performance of Cold In-Place Recycled Roads in Iowa," *Journal of Performance of Constructed Facilities*, Vol. 24, No. 3, pp 265-274.

Kim, Y., Im, S., Lee, H. (2011). "Impacts of Curing Time and Moisture Content on Engineering Properties of Cold In-Place Recycling Mixtures Using Foamed or Emulsified Asphalt," *Journal of Materials in Civil Engineering*, Vol. 23, No. 5, pp. 542-553.

Kroge, M., McGlumphy, K., Besseche, T. (2009), "Full-Depth Reclamation with Engineered Emulsion in Fairburn, Georgia," *Transportation Research Record: Journal of the Transportation Research Board*, 2095, 136-143.

Larsen, M.B., Ray, J.M., Scheller, W. (1983). "Cold-Mix Recycling of Asphalt Materials: An Application to Low-Volume Roads," *Transportation Research Board: Journal of the Transportation Research Record*, 911, 60-63.

Lauter, K.A., Corbett, M.A. (1998). Developing Gyratory Compacter Guidelines for use with Cold In-Place Recycled Material. 43rd Annual Conference of Canadian Technical Asphalt Association. Ottawa, Ontario, pp. 384-396.

Lee, H., Im, S. (2008). *Examination of Curing Criteria for Cold In-Place Recycling*. Report No. IHRB Report TR-553. Iowa Department of Transportation, Ames, IA.

Lee, H., Kim, Y. (2003). Development of a Mix Design Process for Cold-In-Place Rehabilitation Using Foamed Asphalt. Final Report for TR-474 Phase I. Iowa Department of Transportation, Ames, IA.

Lee, H.S., Kim, Y. (2006). Influences of Binder and RAP Temperatures and Foaming Water Content on Cold-In-Place Recycling Mix Design Process using Foamed Asphalt. 2006 Airfield and Highway Pavement Specialty Conference, American Society of Civil Engineers, Reston, VA. Lee, K.W., Brayton, T.E., Gress, D., Harrington, J. (2000). A Performance-Based Mix-Design Method for Cold In-Place Recycling of Bituminous Pavements for Maintenance Management. 9th American Association of State Highway and Transportation Officials and Transportation Research Board Maintenance Management Conference, Juneau, AK, July 16-20.

Lee, H., Kim, Y., Heitzman, M. (2007). Performance Testing for Cold In-Place Recycling with Foamed Asphalt. *Proceedings of the 5th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control*, Park City, UT, Aug 8-10, pp. 367-372.

Lewis, D.E., Jared, D.M., Torres, H., Matthews, M. (2006). "Georgia's Use of Cement-Stabilized Reclaimed Base in Full-Depth Reclamation," *Transportation Research Record: Journal of the Transportation Research Board*, 1952, 125-133.

Liu, J., Nie, Y. (2010). Lime-Flyash Stabilization of Asphalt Pavements Using Full-Depth Reclamation. *Proceedings of the 10th International Conference of Chinese Transportation Professionals*, Beijing, China, Aug 4-8, pp. 3581-3590.

Loizos, A., Papavasiliou, V. (2006). "Evaluation of Foamed Asphalt Cold In-Place Pavement Recycling Using Nondestructive Techniques," *2006 Journal of Transportation Engineering*, American Society of Civil Engineers, Reston, VA, pp. 970-978.

Loizos, A., Papavasiliou, V., Plati, C. (2007). "Early-Life Performance of Cold-in-Place Pavement Recycling with Foamed Asphalt Technique," *Transportation Research Record: Journal of the Transportation Research Board*, 2005, 36-43.

Loria, L.G., Sebaaly, P.E., Hajj, E.Y. (2008). "Long-Term Performance of Reflective Cracking Mitigation Techniques in Nevada," *Transportation Research Record: Journal of the Transportation Research Board*, 2044, 86-95.

Mallela, J., Von Quintus, H.L., Smith, K.L. (2006). *Performance Evaluation of Cold In-Place Recycling Projects in Arizona*. Report No. FHWA-AZ-06-460. Arizona Department of Transportation, Phoenix, AZ.

Mallick, R., Bonner, D., Bradbury, R., Andrews, J., Kandhal, P., Kearney, E. (2002). "Evaluation of Performance of Full-Depth Reclamation Mixes," *Transportation Research Record: Journal of the Transportation Research Board*, 1809, 199-208.

Mamlouk, M.S., Ayoub, N.F. (1983). "Evaluation of Long-Term Behavior of Cold Recycled Asphalt Mixture," *Transportation Research Record: Journal of the Transportation Research Board, No. 911*, Transportation Research Board of the National Academies, Washington, D.C., pp. 64-66.

Martinez, A.H., Miró, R., Pérez-Jiménez, F. (2007). "Spanish Experience with Gyratory Compactor and Indirect Tensile Test in Design and Control of Cold Recycled Asphalt Pavement," *Transportation Research Record: Journal of the Transportation Research Board*, 2001, 163-168.

McDaniel, R.S (1988). "Cold, In-Place Recycling on Indiana State Road 38," *Transportation Research Board: Journal of the Transportation Research Record*, 1196, 234-242.

Miller, H.J., Amatrudo, M., Eaton, R., Hall, A., Kestler, M. (2010). "Field Evaluation of Reconstructed Roadways Incorporating Full Depth Reclamation," *Transportation Research Board 89^h Annual Meeting* (CD-ROM), Washington, D.C., Jan 10-14, Paper 10-1791.

Moore, T., Davidson, J., Kucharek, A., Esenwa, M. (2011). Early Stage Curing Characteristics of Partial Depth Cold Recycling. 56th Annual Conference of the Canadian Technical Asphalt Association, pp. 171-184.

Morian, D.A., Oswalt, J., Deodhar, A. (2004). "Experience with Cold In-Place Recycling as A Reflective Crack Control Technique," *Transportation Research Record: Journal of the Transportation Research Board*, 1869, 47-55.

Mottola, V.E., Chmiel, A. (1990). *Cold Recycling of Bituminous Pavements, Buckshutem Road, County Route 670, Cumberland County, New Jersey.* Publication FHWA-NJ-91-005. FHWA, U.S. Department of Transportation.

Nantung, T., Ji, Y., Shields, T. (2011). "Pavement Structural Evaluation and Design of Full-Depth Reclamation (FDR) Pavement," *Transportation Research Board* 90th Annual Meeting (CD-ROM), Washington, D.C., Jan 23-27, Paper 11-2026.

Pasetto, M., Bortolini, G., Scabbio, F., Carta, I. (2004). Experiments on Cold Recycling with Foamed Bitumen or Bituminous Emulsion and Cement. *3rd Eurasphalt and Eurobitume Congress*, Vienna, pp. 494-503.

Pickett, J. (1991). "Full-Depth Reclamation of Asphalt Roads with Liquid Calcium Chloride," *Transportation Research Record: Journal of the Transportation Research Board*, 1291, 20-23.

Plati, C., Papavasiliou, V. (2011). "Consideration of Strain in Evalution of Sustainable Pavement Material," *Transportation Research Board* 90th Annual Meeting (CD-ROM), Washington, D.C.

Quick, T., Guthrie, W.S. (2011). "Strength Gain of Base Material Treated with Asphalt Emulsion," *Transportation Research Board 90th Annual Meeting* (CD-ROM), Washington, D.C., Jan 23-27, Paper 11-2775.

Rogge, D.F., Hicks, R.G., Scholz, T.V., Allen, D. (1992). "Case Histories of Cold In-Place Recycled Asphalt Pavements in Central Oregon," *Transportation Research Record: Journal of the Transportation Research Board*, 1337, 63-70

Salomon, A., Newcomb, D.E. (2000). *Cold In-Place Recycling Literature Review and Preliminary Mixture Design Procedure*. Report No. MN/RC-2000-21. Minnesota Department of Transportation, St. Paul, Minnesota.

Santagata, E., Chiapinelli, G., Riviera, P.P., Baglieri, O. (2010). Triaxial Testing for the Short-Term Evaluation of Cold-Recycled Bituminous Mixtures. *Road Materials and Pavement Design*, Vol. 11, Issue 1, pp. 123-147.

Scholz, T.V., Rogge, D.F., Hicks, R.G., Allen, D. (1991a). "Evaluation of Mix Properties of Cold In-Place Recycled Mixes," *Transportation Research Record: Journal of the Transportation Research Board*, 1317, 77-89.

Scholz, T.V., Rogge, D.F., Hicks, R.G., Allen, D. (1991b). "Use of Cold In-Place Recycling on Low-Volume Roads," *Transportation Research Record: Journal of the Transportation Research Board*, 1291, 239-252.

Sebaaly, P.E., Bazi, G., Hitti, E., Weitzel, D., Bemanian, S. (2004). "Performance of Cold In-Place Recycling in Nevada," *Transportation Research Record: Journal of the Transportation Research Board*, 1896, 162-169.

Shepard, J.M., Pickett, J., Kienzle, M. (1991). "Full-Depth Reclamation with Calcium Chloride," *Transportation Research Record: Journal of the Transportation Research Board*, 1295, 87-94.

Spelman, S.R. (1983). "Rural Cold Recycling," *Transportation Research Record: Journal of the Transportation Research Board*, 898, 303-307.

Steward, D.A. (1987). "Cold, In-Place Asphalt Pavement Recycling," *Transportation Research Board: Journal of the Transportation Research Record, No.* 1106, 172-178.

Thomas, T., Kadrmas, A., Huffman, J. (2000). "Cold In-Place Recycling on US-283 in Kansas," *Transportation Research Record: Journal of the Transportation Research Board, No. 1723*, Transportation Research Board of the National Academies, Washington, D.C., pp. 53-56.

Thomas, T.W., May, R.W. (2007). "Mechanistic-Empirical Design Guide Modeling of Asphalt Emulsion Full Depth Reclamation Mixes," *Transportation Research Board* 86th Annual Meeting (CD-ROM), Washington, D.C., Jan 21-25, Paper 07-0831.

Wolfe, W., Butalia, T.S., Walker, H. (2009). Full-Depth Reclamation of Asphalt Pavements Using Lime-Activated Class F Fly Ash: Structural Monitoring Aspects. 2009 World of Coal Ash Conference, Lexington, KY.

Wood, L.E., White, T.D., Nelson, T.B. (1988). "Current Practice of Cold In-Place Recycling of Asphalt Pavements," *Transportation Research Record: Journal of the Transportation Research Board*, 1178, 31-37.

Yan, J., Ni, F., Tao, Z., Jia, J. (2009). Development of Asphalt Emulsion Cold In-Place Recycling Specifications. *GeoHunan International Conference*, Changsha Hunan, China, Aug 6-9, pp. 49-55.

Yao, H., Li, L., Xie, H., Dan, H., Yang, X. (2011). Gradation and Performance Research of Cold Recycled Mixture. *GeoHunan International Conference*, Changsha Hunan, China, Aug 9-11, pp. 1-9.

Yuan, D., Nazarian, S., Hoyos, L.R., Puppala, A.J. (2011). "Evaluation and Mix Design of Cement-Treated Base Materials with High RAP Content," *Transportation Research Record: Journal of the Transportation Research Board*, 2212, 110-119.